
DMflow.chat
廣告
一站整合多平台聊天,體驗真人與 AI 自由切換的新境界!支援 Facebook、Instagram、Telegram、LINE 及網站,結合歷史記錄、推播通知、行銷活動及客服轉接,全面提升效率與互動。
GraphRAG 是一種先進的結構化檢索增強生成(RAG)方法,利用知識圖譜提升大型語言模型(LLM)的推理能力和答案準確性,特別適用於企業內部的專有數據查詢。
與知識圖譜的自然語言接口日益流行。這一趨勢將持續並改變我們熟悉的計算機系統交互方式。自然語言查詢(NLQ)是邁向這一方向的重要步驟,許多企業希望能使用自然語言在其數據上進行查詢。
使用現成的大型語言模型(LLM)聊天機器人在企業中的問答應用效果有限,因為它們不包含關於企業活動的專有知識。Graph RAG 提供了一種理想的解決方案,能根據您的具體需求定制 LLM。
檢索增強生成(RAG)是一種自然語言查詢方法,用於增強現有的 LLM,提供更多與問題相關的外部知識。它包括檢索信息組件,用於從外部來源獲取額外信息(稱為”基礎上下文”),然後將其饋送到 LLM 提示中,以更高的準確性回答所需問題。
除了問答,RAG 還可用於信息提取、推薦系統、情感分析和摘要生成等多種自然語言處理任務。
為了實現 Graph RAG 問答,您需要選擇將哪些信息發送給 LLM。通常是根據用戶問題的意圖查詢數據庫。向量數據庫最適合此目的,因為它們通過嵌入捕捉潛在語義、句法結構和項目之間的關係。
基本實施簡單,但需考慮以下挑戰:
Graph RAG 是對流行的 RAG 方法的增強。Graph RAG 使用圖譜數據庫作為 LLM 提供的上下文信息來源,結合實體描述及其屬性和關係,從而促進 LLM 更深入的見解。以下是幾種不同的 Graph RAG 變種:
只要滿足下面圖示,即可自己製作GraphRAG
圖資料庫:(以下提供的圖資料庫只是作者有用過的)
Graph RAG 代表了 LLM 增強的重大進展。通過有效結合檢索和生成方法的優勢,Graph RAG 提升了 LLM 提供準確、相關和上下文信息豐富的答案的能力。這一技術不僅改進了輸出的總體質量,還擴展了 LLM 處理複雜和細微問題的能力。Graph RAG 在各種應用中開創了新可能,從先進的聊天機器人到複雜的數據分析工具,成為自然語言處理領域的重要發展。
一站整合多平台聊天,體驗真人與 AI 自由切換的新境界!支援 Facebook、Instagram、Telegram、LINE 及網站,結合歷史記錄、推播通知、行銷活動及客服轉接,全面提升效率與互動。
告別 RAG 建置惡夢!Cloudflare AutoRAG 讓你的 AI 更懂你 覺得整合自家資料到 AI 應用很麻煩?Cloudflare AutoRAG 提供全自動的 RAG 解決...
中文優化嵌入式AI大模型:免費商用授權清單 本文介紹了幾個優秀的中文優化嵌入式AI大模型,包括BGE系列和E5系列。這些模型都支持中文處理,並提供免費商用授權,適合各類應用場景。我們將詳細分析...
RAG即服務:釋放企業生成式AI潛力 隨著大型語言模型(LLMs)和生成式AI趨勢的崛起,將生成式AI解決方案整合到企業中可以極大地提升工作效率。如果您是生成式AI的新手,大量的術語可能會...
FACTS Grounding 評測基準:突破性驗證 AI 模型事實準確度的革新方案 文章摘要 在 AI 發展突飛猛進的時代,大型語言模型(LLM)的事實準確性一直是業界關注的焦點。最新發布的...
DeepSeek R1:開源 AI 模型革命,挑戰 OpenAI 霸主地位 中國 AI 實驗室 DeepSeek 推出全新開源推理模型 DeepSeek R1,不僅在多項基準測試中與 O...
Anthropic 最新 Citations API:讓 Claude 回應更可靠、更透明 探索 Anthropic 最新推出的 Citations API,這項功能讓 Claude A...
By continuing to use this website, you agree to the use of cookies according to our privacy policy.